Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On some theoretical limitations of Generative Adversarial Networks (2110.10915v1)

Published 21 Oct 2021 in cs.LG

Abstract: Generative Adversarial Networks have become a core technique in Machine Learning to generate unknown distributions from data samples. They have been used in a wide range of context without paying much attention to the possible theoretical limitations of those models. Indeed, because of the universal approximation properties of Neural Networks, it is a general assumption that GANs can generate any probability distribution. Recently, people began to question this assumption and this article is in line with this thinking. We provide a new result based on Extreme Value Theory showing that GANs can't generate heavy tailed distributions. The full proof of this result is given.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.