Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Toward Real-world Image Super-resolution via Hardware-based Adaptive Degradation Models (2110.10755v1)

Published 20 Oct 2021 in eess.IV and cs.CV

Abstract: Most single image super-resolution (SR) methods are developed on synthetic low-resolution (LR) and high-resolution (HR) image pairs, which are simulated by a predetermined degradation operation, e.g., bicubic downsampling. However, these methods only learn the inverse process of the predetermined operation, so they fail to super resolve the real-world LR images; the true formulation deviates from the predetermined operation. To address this problem, we propose a novel supervised method to simulate an unknown degradation process with the inclusion of the prior hardware knowledge of the imaging system. We design an adaptive blurring layer (ABL) in the supervised learning framework to estimate the target LR images. The hyperparameters of the ABL can be adjusted for different imaging hardware. The experiments on the real-world datasets validate that our degradation model can estimate LR images more accurately than the predetermined degradation operation, as well as facilitate existing SR methods to perform reconstructions on real-world LR images more accurately than the conventional approaches.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.