Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Predicting parameters for the Quantum Approximate Optimization Algorithm for MAX-CUT from the infinite-size limit (2110.10685v1)

Published 20 Oct 2021 in quant-ph and cs.DS

Abstract: Combinatorial optimization is regarded as a potentially promising application of near and long-term quantum computers. The best-known heuristic quantum algorithm for combinatorial optimization on gate-based devices, the Quantum Approximate Optimization Algorithm (QAOA), has been the subject of many theoretical and empirical studies. Unfortunately, its application to specific combinatorial optimization problems poses several difficulties: among these, few performance guarantees are known, and the variational nature of the algorithm makes it necessary to classically optimize a number of parameters. In this work, we partially address these issues for a specific combinatorial optimization problem: diluted spin models, with MAX-CUT as a notable special case. Specifically, generalizing the analysis of the Sherrington-Kirkpatrick model by Farhi et al., we establish an explicit algorithm to evaluate the performance of QAOA on MAX-CUT applied to random Erdos-Renyi graphs of expected degree $d$ for an arbitrary constant number of layers $p$ and as the problem size tends to infinity. This analysis yields an explicit mapping between QAOA parameters for MAX-CUT on Erdos-Renyi graphs of expected degree $d$, in the limit $d \to \infty$, and the Sherrington-Kirkpatrick model, and gives good QAOA variational parameters for MAX-CUT applied to Erdos-Renyi graphs. We then partially generalize the latter analysis to graphs with a degree distribution rather than a single degree $d$, and finally to diluted spin-models with $D$-body interactions ($D \geq 3$). We validate our results with numerical experiments suggesting they may have a larger reach than rigorously established; among other things, our algorithms provided good initial, if not nearly optimal, variational parameters for very small problem instances where the infinite-size limit assumption is clearly violated.

Citations (29)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.