Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Dynamic Multi-Person Mesh Recovery From Uncalibrated Multi-View Cameras (2110.10355v1)

Published 20 Oct 2021 in cs.CV

Abstract: Dynamic multi-person mesh recovery has been a hot topic in 3D vision recently. However, few works focus on the multi-person motion capture from uncalibrated cameras, which mainly faces two challenges: the one is that inter-person interactions and occlusions introduce inherent ambiguities for both camera calibration and motion capture; The other is that a lack of dense correspondences can be used to constrain sparse camera geometries in a dynamic multi-person scene. Our key idea is incorporating motion prior knowledge into simultaneous optimization of extrinsic camera parameters and human meshes from noisy human semantics. First, we introduce a physics-geometry consistency to reduce the low and high frequency noises of the detected human semantics. Then a novel latent motion prior is proposed to simultaneously optimize extrinsic camera parameters and coherent human motions from slightly noisy inputs. Experimental results show that accurate camera parameters and human motions can be obtained through one-stage optimization. The codes will be publicly available at~\url{https://www.yangangwang.com}.

Citations (31)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.