Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 156 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 168 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Minibatch vs Local SGD with Shuffling: Tight Convergence Bounds and Beyond (2110.10342v2)

Published 20 Oct 2021 in cs.LG, math.OC, and stat.ML

Abstract: In distributed learning, local SGD (also known as federated averaging) and its simple baseline minibatch SGD are widely studied optimization methods. Most existing analyses of these methods assume independent and unbiased gradient estimates obtained via with-replacement sampling. In contrast, we study shuffling-based variants: minibatch and local Random Reshuffling, which draw stochastic gradients without replacement and are thus closer to practice. For smooth functions satisfying the Polyak-{\L}ojasiewicz condition, we obtain convergence bounds (in the large epoch regime) which show that these shuffling-based variants converge faster than their with-replacement counterparts. Moreover, we prove matching lower bounds showing that our convergence analysis is tight. Finally, we propose an algorithmic modification called synchronized shuffling that leads to convergence rates faster than our lower bounds in near-homogeneous settings.

Citations (39)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.