Papers
Topics
Authors
Recent
2000 character limit reached

Computationally Efficient Safe Reinforcement Learning for Power Systems (2110.10333v2)

Published 20 Oct 2021 in eess.SY and cs.SY

Abstract: We propose a computationally efficient approach to safe reinforcement learning (RL) for frequency regulation in power systems with high levels of variable renewable energy resources. The approach draws on set-theoretic control techniques to craft a neural network-based control policy that is guaranteed to satisfy safety-critical state constraints, without needing to solve a model predictive control or projection problem in real time. By exploiting the properties of robust controlled-invariant polytopes, we construct a novel, closed-form "safety-filter" that enables end-to-end safe learning using any policy gradient-based RL algorithm. We then apply the safety filter in conjunction with the deep deterministic policy gradient (DDPG) algorithm to regulate frequency in a modified 9-bus power system, and show that the learned policy is more cost-effective than robust linear feedback control techniques while maintaining the same safety guarantee. We also show that the proposed paradigm outperforms DDPG augmented with constraint violation penalties.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.