Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Learning Partial Equivariances from Data (2110.10211v3)

Published 19 Oct 2021 in cs.CV and cs.LG

Abstract: Group Convolutional Neural Networks (G-CNNs) constrain learned features to respect the symmetries in the selected group, and lead to better generalization when these symmetries appear in the data. If this is not the case, however, equivariance leads to overly constrained models and worse performance. Frequently, transformations occurring in data can be better represented by a subset of a group than by a group as a whole, e.g., rotations in $[-90{\circ}, 90{\circ}]$. In such cases, a model that respects equivariance $\textit{partially}$ is better suited to represent the data. In addition, relevant transformations may differ for low and high-level features. For instance, full rotation equivariance is useful to describe edge orientations in a face, but partial rotation equivariance is better suited to describe face poses relative to the camera. In other words, the optimal level of equivariance may differ per layer. In this work, we introduce $\textit{Partial G-CNNs}$: G-CNNs able to learn layer-wise levels of partial and full equivariance to discrete, continuous groups and combinations thereof as part of training. Partial G-CNNs retain full equivariance when beneficial, e.g., for rotated MNIST, but adjust it whenever it becomes harmful, e.g., for classification of 6 / 9 digits or natural images. We empirically show that partial G-CNNs pair G-CNNs when full equivariance is advantageous, and outperform them otherwise.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.