Papers
Topics
Authors
Recent
2000 character limit reached

Continuous Control with Action Quantization from Demonstrations (2110.10149v2)

Published 19 Oct 2021 in cs.LG, cs.AI, and cs.RO

Abstract: In this paper, we propose a novel Reinforcement Learning (RL) framework for problems with continuous action spaces: Action Quantization from Demonstrations (AQuaDem). The proposed approach consists in learning a discretization of continuous action spaces from human demonstrations. This discretization returns a set of plausible actions (in light of the demonstrations) for each input state, thus capturing the priors of the demonstrator and their multimodal behavior. By discretizing the action space, any discrete action deep RL technique can be readily applied to the continuous control problem. Experiments show that the proposed approach outperforms state-of-the-art methods such as SAC in the RL setup, and GAIL in the Imitation Learning setup. We provide a website with interactive videos: https://google-research.github.io/aquadem/ and make the code available: https://github.com/google-research/google-research/tree/master/aquadem.

Citations (23)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com