Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 65 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Stochastic Primal-Dual Deep Unrolling (2110.10093v4)

Published 19 Oct 2021 in eess.IV, cs.CV, and math.OC

Abstract: We propose a new type of efficient deep-unrolling networks for solving imaging inverse problems. Conventional deep-unrolling methods require full forward operator and its adjoint across each layer, and hence can be significantly more expensive computationally as compared with other end-to-end methods that are based on post-processing of model-based reconstructions, especially for 3D image reconstruction tasks. We develop a stochastic (ordered-subsets) variant of the classical learned primal-dual (LPD), which is a state-of-the-art unrolling network for tomographic image reconstruction. The proposed learned stochastic primal-dual (LSPD) network only uses subsets of the forward and adjoint operators and offers considerable computational efficiency. We provide theoretical analysis of a special case of our LSPD framework, suggesting that it has the potential to achieve image reconstruction quality competitive with the full-batch LPD while requiring only a fraction of the computation. The numerical results for two different X-ray computed tomography (CT) imaging tasks (namely, low-dose and sparse-view CT) corroborate this theoretical finding, demonstrating the promise of LSPD networks for large-scale imaging problems.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.