Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Gradient-Based Mixed Planning with Symbolic and Numeric Action Parameters (2110.10007v2)

Published 19 Oct 2021 in cs.AI

Abstract: Dealing with planning problems with both logical relations and numeric changes in real-world dynamic environments is challenging. Existing numeric planning systems for the problem often discretize numeric variables or impose convex constraints on numeric variables, which harms the performance when solving problems. In this paper, we propose a novel algorithm framework to solve numeric planning problems mixed with logical relations and numeric changes based on gradient descent. We cast the numeric planning with logical relations and numeric changes as an optimization problem. Specifically, we extend syntax to allow parameters of action models to be either objects or real-valued numbers, which enhances the ability to model real-world numeric effects. Based on the extended modeling language, we propose a gradient-based framework to simultaneously optimize numeric parameters and compute appropriate actions to form candidate plans. The gradient-based framework is composed of an algorithmic heuristic module based on propositional operations to select actions and generate constraints for gradient descent, an algorithmic transition module to update states to next ones, and a loss module to compute loss. We repeatedly minimize loss by updating numeric parameters and compute candidate plans until it converges into a valid plan for the planning problem. In the empirical study, we exhibit that our algorithm framework is both effective and efficient in solving planning problems mixed with logical relations and numeric changes, especially when the problems contain obstacles and non-linear numeric effects.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.