Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Speech Enhancement Based on Cyclegan with Noise-informed Training (2110.09924v2)

Published 19 Oct 2021 in eess.AS and cs.SD

Abstract: Cycle-consistent generative adversarial networks (CycleGAN) were successfully applied to speech enhancement (SE) tasks with unpaired noisy-clean training data. The CycleGAN SE system adopted two generators and two discriminators trained with losses from noisy-to-clean and clean-to-noisy conversions. CycleGAN showed promising results for numerous SE tasks. Herein, we investigate a potential limitation of the clean-to-noisy conversion part and propose a novel noise-informed training (NIT) approach to improve the performance of the original CycleGAN SE system. The main idea of the NIT approach is to incorporate target domain information for clean-to-noisy conversion to facilitate a better training procedure. The experimental results confirmed that the proposed NIT approach improved the generalization capability of the original CycleGAN SE system with a notable margin.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.