Speech Enhancement Based on Cyclegan with Noise-informed Training (2110.09924v2)
Abstract: Cycle-consistent generative adversarial networks (CycleGAN) were successfully applied to speech enhancement (SE) tasks with unpaired noisy-clean training data. The CycleGAN SE system adopted two generators and two discriminators trained with losses from noisy-to-clean and clean-to-noisy conversions. CycleGAN showed promising results for numerous SE tasks. Herein, we investigate a potential limitation of the clean-to-noisy conversion part and propose a novel noise-informed training (NIT) approach to improve the performance of the original CycleGAN SE system. The main idea of the NIT approach is to incorporate target domain information for clean-to-noisy conversion to facilitate a better training procedure. The experimental results confirmed that the proposed NIT approach improved the generalization capability of the original CycleGAN SE system with a notable margin.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.