Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Prepartition: Load Balancing Approach for Virtual Machine Reservations in a Cloud Data Center (2110.09913v1)

Published 19 Oct 2021 in cs.DC

Abstract: Load balancing is vital for the efficient and long-term operation of cloud data centers. With virtualization, post (reactive) migration of virtual machines after allocation is the traditional way for load balancing and consolidation. However, reactive migration is not easy to obtain predefined load balance objectives and may interrupt services and bring instability. Therefore, we provide a new approach, called Prepartition, for load balancing. It partitions a VM request into a few sub-requests sequentially with start time, end time and capacity demands, and treats each sub-request as a regular VM request. In this way, it can proactively set a bound for each VM request on each physical machine and makes the scheduler get ready before VM migration to obtain the predefined load balancing goal, which supports the resource allocation in a fine-grained manner. Simulations with real-world trace and synthetic data show that Prepartition for offline (PrepartitionOff) scheduling has 10%-20% better performance than the existing load balancing algorithms under several metrics, including average utilization, imbalance degree, makespan and Capacity_makespan. We also extend Prepartition to online load balancing. Evaluation results show that our proposed approach also outperforms existing online algorithms.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.