Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

FedHe: Heterogeneous Models and Communication-Efficient Federated Learning (2110.09910v1)

Published 19 Oct 2021 in cs.LG and cs.DC

Abstract: Federated learning (FL) is able to manage edge devices to cooperatively train a model while maintaining the training data local and private. One common assumption in FL is that all edge devices share the same machine learning model in training, for example, identical neural network architecture. However, the computation and store capability of different devices may not be the same. Moreover, reducing communication overheads can improve the training efficiency though it is still a challenging problem in FL. In this paper, we propose a novel FL method, called FedHe, inspired by knowledge distillation, which can train heterogeneous models and support asynchronous training processes with significantly reduced communication overheads. Our analysis and experimental results demonstrate that the performance of our proposed method is better than the state-of-the-art algorithms in terms of communication overheads and model accuracy.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)