Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Ensemble ALBERT on SQuAD 2.0 (2110.09665v1)

Published 19 Oct 2021 in cs.CL and cs.AI

Abstract: Machine question answering is an essential yet challenging task in natural language processing. Recently, Pre-trained Contextual Embeddings (PCE) models like Bidirectional Encoder Representations from Transformers (BERT) and A Lite BERT (ALBERT) have attracted lots of attention due to their great performance in a wide range of NLP tasks. In our Paper, we utilized the fine-tuned ALBERT models and implemented combinations of additional layers (e.g. attention layer, RNN layer) on top of them to improve model performance on Stanford Question Answering Dataset (SQuAD 2.0). We implemented four different models with different layers on top of ALBERT-base model, and two other models based on ALBERT-xlarge and ALBERT-xxlarge. We compared their performance to our baseline model ALBERT-base-v2 + ALBERT-SQuAD-out with details. Our best-performing individual model is ALBERT-xxlarge + ALBERT-SQuAD-out, which achieved an F1 score of 88.435 on the dev set. Furthermore, we have implemented three different ensemble algorithms to boost overall performance. By passing in several best-performing models' results into our weighted voting ensemble algorithm, our final result ranks first on the Stanford CS224N Test PCE SQuAD Leaderboard with F1 = 90.123.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.