Papers
Topics
Authors
Recent
2000 character limit reached

Efficient Sequence Training of Attention Models using Approximative Recombination

Published 18 Oct 2021 in cs.CL, cs.SD, and eess.AS | (2110.09245v2)

Abstract: Sequence discriminative training is a great tool to improve the performance of an automatic speech recognition system. It does, however, necessitate a sum over all possible word sequences, which is intractable to compute in practice. Current state-of-the-art systems with unlimited label context circumvent this problem by limiting the summation to an n-best list of relevant competing hypotheses obtained from beam search. This work proposes to perform (approximative) recombinations of hypotheses during beam search, if they share a common local history. The error that is incurred by the approximation is analyzed and it is shown that using this technique the effective beam size can be increased by several orders of magnitude without significantly increasing the computational requirements. Lastly, it is shown that this technique can be used to effectively perform sequence discriminative training for attention-based encoder-decoder acoustic models on the LibriSpeech task.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.