Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Disentangled Representation with Dual-stage Feature Learning for Face Anti-spoofing (2110.09157v1)

Published 18 Oct 2021 in cs.CV

Abstract: As face recognition is widely used in diverse security-critical applications, the study of face anti-spoofing (FAS) has attracted more and more attention. Several FAS methods have achieved promising performances if the attack types in the testing data are the same as training data, while the performance significantly degrades for unseen attack types. It is essential to learn more generalized and discriminative features to prevent overfitting to pre-defined spoof attack types. This paper proposes a novel dual-stage disentangled representation learning method that can efficiently untangle spoof-related features from irrelevant ones. Unlike previous FAS disentanglement works with one-stage architecture, we found that the dual-stage training design can improve the training stability and effectively encode the features to detect unseen attack types. Our experiments show that the proposed method provides superior accuracy than the state-of-the-art methods on several cross-type FAS benchmarks.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.