Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 124 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Nonlinear Reduced DNN Models for State Estimation (2110.08951v2)

Published 18 Oct 2021 in math.NA and cs.NA

Abstract: We propose in this paper a data driven state estimation scheme for generating nonlinear reduced models for parametric families of PDEs, directly providing data-to-state maps, represented in terms of Deep Neural Networks. A major constituent is a sensor-induced decomposition of a model-compliant Hilbert space warranting approximation in problem relevant metrics. It plays a similar role as in a Parametric Background Data Weak framework for state estimators based on Reduced Basis concepts. Extensive numerical tests shed light on several optimization strategies that are to improve robustness and performance of such estimators.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.