Papers
Topics
Authors
Recent
2000 character limit reached

Prioritization of COVID-19-related literature via unsupervised keyphrase extraction and document representation learning (2110.08874v1)

Published 17 Oct 2021 in cs.IR, cs.CL, and cs.DL

Abstract: The COVID-19 pandemic triggered a wave of novel scientific literature that is impossible to inspect and study in a reasonable time frame manually. Current machine learning methods offer to project such body of literature into the vector space, where similar documents are located close to each other, offering an insightful exploration of scientific papers and other knowledge sources associated with COVID-19. However, to start searching, such texts need to be appropriately annotated, which is seldom the case due to the lack of human resources. In our system, the current body of COVID-19-related literature is annotated using unsupervised keyphrase extraction, facilitating the initial queries to the latent space containing the learned document embeddings (low-dimensional representations). The solution is accessible through a web server capable of interactive search, term ranking, and exploration of potentially interesting literature. We demonstrate the usefulness of the approach via case studies from the medicinal chemistry domain.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.