Papers
Topics
Authors
Recent
2000 character limit reached

On-board Fault Diagnosis of a Laboratory Mini SR-30 Gas Turbine Engine (2110.08820v2)

Published 17 Oct 2021 in cs.LG, cs.SY, and eess.SY

Abstract: Inspired by recent progress in machine learning, a data-driven fault diagnosis and isolation (FDI) scheme is explicitly developed for failure in the fuel supply system and sensor measurements of the laboratory gas turbine system. A passive approach of fault diagnosis is implemented where a model is trained using machine learning classifiers to detect a given set of fault scenarios in real-time on which it is trained. Towards the end, a comparative study is presented for well-known classification techniques, namely Support vector classifier, linear discriminant analysis, K-neighbor, and decision trees. Several simulation studies were carried out to demonstrate and illustrate the proposed fault diagnosis scheme's advantages, capabilities, and performance.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.