Terminal Embeddings in Sublinear Time (2110.08691v3)
Abstract: Recently (Elkin, Filtser, Neiman 2017) introduced the concept of a {\it terminal embedding} from one metric space $(X,d_X)$ to another $(Y,d_Y)$ with a set of designated terminals $T\subset X$. Such an embedding $f$ is said to have distortion $\rho\ge 1$ if $\rho$ is the smallest value such that there exists a constant $C>0$ satisfying \begin{equation*} \forall x\in T\ \forall q\in X,\ C d_X(x, q) \le d_Y(f(x), f(q)) \le C \rho d_X(x, q) . \end{equation*} When $X,Y$ are both Euclidean metrics with $Y$ being $m$-dimensional, recently (Narayanan, Nelson 2019), following work of (Mahabadi, Makarychev, Makarychev, Razenshteyn 2018), showed that distortion $1+\epsilon$ is achievable via such a terminal embedding with $m = O(\epsilon{-2}\log n)$ for $n := |T|$. This generalizes the Johnson-Lindenstrauss lemma, which only preserves distances within $T$ and not to $T$ from the rest of space. The downside of prior work is that evaluating their embedding on some $q\in \mathbb{R}d$ required solving a semidefinite program with $\Theta(n)$ constraints in~$m$ variables and thus required some superlinear $\mathrm{poly}(n)$ runtime. Our main contribution in this work is to give a new data structure for computing terminal embeddings. We show how to pre-process $T$ to obtain an almost linear-space data structure that supports computing the terminal embedding image of any $q\in\mathbb{R}d$ in sublinear time $O* (n{1-\Theta(\epsilon2)} + d)$. To accomplish this, we leverage tools developed in the context of approximate nearest neighbor search.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.