Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Algorithmic Thresholds for Refuting Random Polynomial Systems (2110.08677v1)

Published 16 Oct 2021 in cs.CC and cs.DS

Abstract: Consider a system of $m$ polynomial equations ${p_i(x) = b_i}_{i \leq m}$ of degree $D\geq 2$ in $n$-dimensional variable $x \in \mathbb{R}n$ such that each coefficient of every $p_i$ and $b_i$s are chosen at random and independently from some continuous distribution. We study the basic question of determining the smallest $m$ -- the algorithmic threshold -- for which efficient algorithms can find refutations (i.e. certificates of unsatisfiability) for such systems. This setting generalizes problems such as refuting random SAT instances, low-rank matrix sensing and certifying pseudo-randomness of Goldreich's candidate generators and generalizations. We show that for every $d \in \mathbb{N}$, the $(n+m){O(d)}$-time canonical sum-of-squares (SoS) relaxation refutes such a system with high probability whenever $m \geq O(n) \cdot (\frac{n}{d}){D-1}$. We prove a lower bound in the restricted low-degree polynomial model of computation which suggests that this trade-off between SoS degree and the number of equations is nearly tight for all $d$. We also confirm the predictions of this lower bound in a limited setting by showing a lower bound on the canonical degree-$4$ sum-of-squares relaxation for refuting random quadratic polynomials. Together, our results provide evidence for an algorithmic threshold for the problem at $m \gtrsim \widetilde{O}(n) \cdot n{(1-\delta)(D-1)}$ for $2{n{\delta}}$-time algorithms for all $\delta$.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.