Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Challenges Porting a C++ Template-Metaprogramming Abstraction Layer to Directive-based Offloading (2110.08650v2)

Published 16 Oct 2021 in cs.PL and cs.SE

Abstract: HPC systems employ a growing variety of compute accelerators with different architectures and from different vendors. Large scientific applications are required to run efficiently across these systems but need to retain a single code-base in order to not stifle development. Directive-based offloading programming models set out to provide the required portability, but, to existing codes, they themselves represent yet another API to port to. Here, we present our approach of porting the GPU-accelerated particle-in-cell code PIConGPU to OpenACC and OpenMP target by adding two new backends to its existing C++-template metaprogramming-based offloading abstraction layer alpaka and avoiding other modifications to the application code. We introduce our approach in the face of conflicts between requirements and available features in the standards as well as practical hurdles posed by immature compiler support.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.