Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Hydra: A System for Large Multi-Model Deep Learning (2110.08633v7)

Published 16 Oct 2021 in cs.DC, cs.DB, and cs.LG

Abstract: Scaling up model depth and size is now a common approach to raise accuracy in many deep learning (DL) applications, as evidenced by the widespread success of multi-billion or even trillion parameter models in NLP research. Despite success in DL research and at major technology companies, broader practical adoption of such large models among domain scientists and businesses is still bottlenecked by GPU memory limits, high training costs, and low GPU availability, even on public clouds. Model selection needs further compound these resource challenges: users often need to compare dozens of models with different hyper-parameters or neural architectures to suit their specific task and dataset. In this paper, we present Hydra, a system designed to tackle such challenges by enabling out-of-the-box scaling for multi-large-model DL workloads on even commodity GPUs in a resource-efficient manner. Hydra is the first approach to holistically optimize the execution of multi-model workloads for large DL models. We do this by adapting prior "model-parallel" execution schemes to work with scalable parameter offloading across the memory hierarchy and further hybridizing this approach with task-parallel job scheduling techniques. Hydra decouples scalability of model parameters from parallelism of execution, thus enabling DL users to train even a 6-billion parameter model on a single commodity GPU. It also fully exploits the speedup potential of task parallelism in multi-GPU setups, yielding near-linear strong scaling and making rigorous model selection perhaps more practical for such models. We evaluate end-to-end performance by fine-tuning GPT-2 for language modeling. We find that Hydra offers between 50% and 100% higher training throughput than even the best settings of state-of-the-art industrial frameworks such as DeepSpeed and GPipe for multi-large-model training.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.