Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Mapping illegal waste dumping sites with neural-network classification of satellite imagery (2110.08599v2)

Published 16 Oct 2021 in cs.LG, cs.CV, and cs.CY

Abstract: Public health and habitat quality are crucial goals of urban planning. In recent years, the severe social and environmental impact of illegal waste dumping sites has made them one of the most serious problems faced by cities in the Global South, in a context of scarce information available for decision making. To help identify the location of dumping sites and track their evolution over time we adopt a data-driven model from the machine learning domain, analyzing satellite images. This allows us to take advantage of the increasing availability of geo-spatial open-data, high-resolution satellite imagery, and open source tools to train machine learning algorithms with a small set of known waste dumping sites in Buenos Aires, and then predict the location of other sites over vast areas at high speed and low cost. This case study shows the results of a collaboration between Dymaxion Labs and Fundaci\'on Bunge y Born to harness this technique in order to create a comprehensive map of potential locations of illegal waste dumping sites in the region.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.