Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

AugmentedCode: Examining the Effects of Natural Language Resources in Code Retrieval Models (2110.08512v1)

Published 16 Oct 2021 in cs.SE and cs.AI

Abstract: Code retrieval is allowing software engineers to search codes through a natural language query, which relies on both natural language processing and software engineering techniques. There have been several attempts on code retrieval from searching snippet codes to function codes. In this paper, we introduce Augmented Code (AugmentedCode) retrieval which takes advantage of existing information within the code and constructs augmented programming language to improve the code retrieval models' performance. We curated a large corpus of Python and showcased the the framework and the results of augmented programming language which outperforms on CodeSearchNet and CodeBERT with a Mean Reciprocal Rank (MRR) of 0.73 and 0.96, respectively. The outperformed fine-tuned augmented code retrieval model is published in HuggingFace at https://huggingface.co/Fujitsu/AugCode and a demonstration video is available at: https://youtu.be/mnZrUTANjGs .

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.