Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

FedMM: Saddle Point Optimization for Federated Adversarial Domain Adaptation (2110.08477v3)

Published 16 Oct 2021 in cs.LG

Abstract: Federated adversary domain adaptation is a unique distributed minimax training task due to the prevalence of label imbalance among clients, with each client only seeing a subset of the classes of labels required to train a global model. To tackle this problem, we propose a distributed minimax optimizer referred to as FedMM, designed specifically for the federated adversary domain adaptation problem. It works well even in the extreme case where each client has different label classes and some clients only have unsupervised tasks. We prove that FedMM ensures convergence to a stationary point with domain-shifted unsupervised data. On a variety of benchmark datasets, extensive experiments show that FedMM consistently achieves either significant communication savings or significant accuracy improvements over federated optimizers based on the gradient descent ascent (GDA) algorithm. When training from scratch, for example, it outperforms other GDA based federated average methods by around $20\%$ in accuracy over the same communication rounds; and it consistently outperforms when training from pre-trained models with an accuracy improvement from $5.4\%$ to $9\%$ for different networks.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub