Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Joint 3D Human Shape Recovery and Pose Estimation from a Single Image with Bilayer Graph (2110.08472v2)

Published 16 Oct 2021 in cs.CV

Abstract: The ability to estimate the 3D human shape and pose from images can be useful in many contexts. Recent approaches have explored using graph convolutional networks and achieved promising results. The fact that the 3D shape is represented by a mesh, an undirected graph, makes graph convolutional networks a natural fit for this problem. However, graph convolutional networks have limited representation power. Information from nodes in the graph is passed to connected neighbors, and propagation of information requires successive graph convolutions. To overcome this limitation, we propose a dual-scale graph approach. We use a coarse graph, derived from a dense graph, to estimate the human's 3D pose, and the dense graph to estimate the 3D shape. Information in coarse graphs can be propagated over longer distances compared to dense graphs. In addition, information about pose can guide to recover local shape detail and vice versa. We recognize that the connection between coarse and dense is itself a graph, and introduce graph fusion blocks to exchange information between graphs with different scales. We train our model end-to-end and show that we can achieve state-of-the-art results for several evaluation datasets.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.