Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Knowledge Enhanced Pretrained Language Models: A Compreshensive Survey (2110.08455v1)

Published 16 Oct 2021 in cs.CL

Abstract: Pretrained LLMs (PLM) have established a new paradigm through learning informative contextualized representations on large-scale text corpus. This new paradigm has revolutionized the entire field of natural language processing, and set the new state-of-the-art performance for a wide variety of NLP tasks. However, though PLMs could store certain knowledge/facts from training corpus, their knowledge awareness is still far from satisfactory. To address this issue, integrating knowledge into PLMs have recently become a very active research area and a variety of approaches have been developed. In this paper, we provide a comprehensive survey of the literature on this emerging and fast-growing field - Knowledge Enhanced Pretrained LLMs (KE-PLMs). We introduce three taxonomies to categorize existing work. Besides, we also survey the various NLU and NLG applications on which KE-PLM has demonstrated superior performance over vanilla PLMs. Finally, we discuss challenges that face KE-PLMs and also promising directions for future research.

Citations (39)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.