Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Nuances in Margin Conditions Determine Gains in Active Learning (2110.08418v2)

Published 16 Oct 2021 in stat.ML and cs.LG

Abstract: We consider nonparametric classification with smooth regression functions, where it is well known that notions of margin in $E[Y|X]$ determine fast or slow rates in both active and passive learning. Here we elucidate a striking distinction between the two settings. Namely, we show that some seemingly benign nuances in notions of margin -- involving the uniqueness of the Bayes classifier, and which have no apparent effect on rates in passive learning -- determine whether or not any active learner can outperform passive learning rates. In particular, for Audibert-Tsybakov's margin condition (allowing general situations with non-unique Bayes classifiers), no active learner can gain over passive learning in commonly studied settings where the marginal on $X$ is near uniform. Our results thus negate the usual intuition from past literature that active rates should improve over passive rates in nonparametric settings.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.