Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Bayesian Approach for Medical Inquiry and Disease Inference in Automated Differential Diagnosis (2110.08393v2)

Published 15 Oct 2021 in cs.AI and cs.LG

Abstract: We propose a Bayesian approach for both medical inquiry and disease inference, the two major phases in differential diagnosis. Unlike previous work that simulates data from given probabilities and uses ML algorithms on them, we directly use the Quick Medical Reference (QMR) belief network, and apply Bayesian inference in the inference phase and Bayesian experimental design in the inquiry phase. Moreover, we improve the inquiry phase by extending the Bayesian experimental design framework from one-step search to multi-step search. Our approach has some practical advantages as it is interpretable, free of costly training, and able to adapt to new changes without any additional effort. Our experiments show that our approach achieves new state-of-the-art results on two simulated datasets, SymCAT and HPO, and competitive results on two diagnosis dialogue datasets, Muzhi and Dxy.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)