Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Bayesian Approach for Medical Inquiry and Disease Inference in Automated Differential Diagnosis (2110.08393v2)

Published 15 Oct 2021 in cs.AI and cs.LG

Abstract: We propose a Bayesian approach for both medical inquiry and disease inference, the two major phases in differential diagnosis. Unlike previous work that simulates data from given probabilities and uses ML algorithms on them, we directly use the Quick Medical Reference (QMR) belief network, and apply Bayesian inference in the inference phase and Bayesian experimental design in the inquiry phase. Moreover, we improve the inquiry phase by extending the Bayesian experimental design framework from one-step search to multi-step search. Our approach has some practical advantages as it is interpretable, free of costly training, and able to adapt to new changes without any additional effort. Our experiments show that our approach achieves new state-of-the-art results on two simulated datasets, SymCAT and HPO, and competitive results on two diagnosis dialogue datasets, Muzhi and Dxy.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Hong Guan (9 papers)
  2. Chitta Baral (152 papers)
Citations (9)

Summary

We haven't generated a summary for this paper yet.