Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Differentiable Network Pruning for Microcontrollers (2110.08350v3)

Published 15 Oct 2021 in cs.LG, cs.SY, and eess.SY

Abstract: Embedded and personal IoT devices are powered by microcontroller units (MCUs), whose extreme resource scarcity is a major obstacle for applications relying on on-device deep learning inference. Orders of magnitude less storage, memory and computational capacity, compared to what is typically required to execute neural networks, impose strict structural constraints on the network architecture and call for specialist model compression methodology. In this work, we present a differentiable structured network pruning method for convolutional neural networks, which integrates a model's MCU-specific resource usage and parameter importance feedback to obtain highly compressed yet accurate classification models. Our methodology (a) improves key resource usage of models up to 80x; (b) prunes iteratively while a model is trained, resulting in little to no overhead or even improved training time; (c) produces compressed models with matching or improved resource usage up to 1.4x in less time compared to prior MCU-specific methods. Compressed models are available for download.

Citations (14)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube