Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Static Analysis Framework for Data Science Notebooks (2110.08339v2)

Published 15 Oct 2021 in cs.DB

Abstract: Notebooks provide an interactive environment for programmers to develop code, analyse data and inject interleaved visualizations in a single environment. Despite their flexibility, a major pitfall that data scientists encounter is unexpected behaviour caused by the unique out-of-order execution model of notebooks. As a result, data scientists face various challenges ranging from notebook correctness, reproducibility and cleaning. In this paper, we propose a framework that performs static analysis on notebooks, incorporating their unique execution semantics. Our framework is general in the sense that it accommodate for a wide range of analyses, useful for various notebook use cases. We have instantiated our framework on a diverse set of analyses and have evaluated them on 2211 real world notebooks. Our evaluation demonstrates that the vast majority (98.7%) of notebooks can be analysed in less than a second, well within the time frame required by interactive notebook clients

Citations (18)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.