Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bound-Preserving Finite-Volume Schemes for Systems of Continuity Equations with Saturation (2110.08186v3)

Published 15 Oct 2021 in math.NA, cs.NA, and math.AP

Abstract: We propose finite-volume schemes for general continuity equations which preserve positivity and global bounds that arise from saturation effects in the mobility function. In the case of gradient flows, the schemes dissipate the free energy at the fully discrete level. Moreover, these schemes are generalised to coupled systems of non-linear continuity equations, such as multispecies models in mathematical physics or biology, preserving the bounds and the dissipation of the energy whenever applicable. These results are illustrated through extensive numerical simulations which explore known behaviours in biology and showcase new phenomena not yet described by the literature.

Citations (11)

Summary

We haven't generated a summary for this paper yet.