Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Kronecker Decomposition for GPT Compression (2110.08152v1)

Published 15 Oct 2021 in cs.CL

Abstract: GPT is an auto-regressive Transformer-based pre-trained LLM which has attracted a lot of attention in the NLP domain due to its state-of-the-art performance in several downstream tasks. The success of GPT is mostly attributed to its pre-training on huge amount of data and its large number of parameters (from ~100M to billions of parameters). Despite the superior performance of GPT (especially in few-shot or zero-shot setup), this overparameterized nature of GPT can be very prohibitive for deploying this model on devices with limited computational power or memory. This problem can be mitigated using model compression techniques; however, compressing GPT models has not been investigated much in the literature. In this work, we use Kronecker decomposition to compress the linear mappings of the GPT-22 model. Our Kronecker GPT-2 model (KnGPT2) is initialized based on the Kronecker decomposed version of the GPT-2 model and then is undergone a very light pre-training on only a small portion of the training data with intermediate layer knowledge distillation (ILKD). Finally, our KnGPT2 is fine-tuned on down-stream tasks using ILKD as well. We evaluate our model on both LLMing and General Language Understanding Evaluation benchmark tasks and show that with more efficient pre-training and similar number of parameters, our KnGPT2 outperforms the existing DistilGPT2 model significantly.

Citations (29)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.