Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 124 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Halpern-Type Accelerated and Splitting Algorithms For Monotone Inclusions (2110.08150v2)

Published 15 Oct 2021 in math.OC and stat.ML

Abstract: In this paper, we develop a new type of accelerated algorithms to solve some classes of maximally monotone equations as well as monotone inclusions. Instead of using Nesterov's accelerating approach, our methods rely on a so-called Halpern-type fixed-point iteration in [32], and recently exploited by a number of researchers, including [24, 70]. Firstly, we derive a new variant of the anchored extra-gradient scheme in [70] based on Popov's past extra-gradient method to solve a maximally monotone equation $G(x) = 0$. We show that our method achieves the same $\mathcal{O}(1/k)$ convergence rate (up to a constant factor) as in the anchored extra-gradient algorithm on the operator norm $\Vert G(x_k)\Vert$, , but requires only one evaluation of $G$ at each iteration, where $k$ is the iteration counter. Next, we develop two splitting algorithms to approximate a zero point of the sum of two maximally monotone operators. The first algorithm originates from the anchored extra-gradient method combining with a splitting technique, while the second one is its Popov's variant which can reduce the per-iteration complexity. Both algorithms appear to be new and can be viewed as accelerated variants of the Douglas-Rachford (DR) splitting method. They both achieve $\mathcal{O}(1/k)$ rates on the norm $\Vert G_{\gamma}(x_k)\Vert$ of the forward-backward residual operator $G_{\gamma}(\cdot)$ associated with the problem. We also propose a new accelerated Douglas-Rachford splitting scheme for solving this problem which achieves $\mathcal{O}(1/k)$ convergence rate on $\Vert G_{\gamma}(x_k)\Vert$ under only maximally monotone assumptions. Finally, we specify our first algorithm to solve convex-concave minimax problems and apply our accelerated DR scheme to derive a new variant of the alternating direction method of multipliers (ADMM).

Citations (30)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.