Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 89 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Learning Semantics: An Opportunity for Effective 6G Communications (2110.08049v1)

Published 14 Oct 2021 in cs.IT, cs.AI, cs.CL, cs.LO, and math.IT

Abstract: Recently, semantic communications are envisioned as a key enabler of future 6G networks. Back to Shannon's information theory, the goal of communication has long been to guarantee the correct reception of transmitted messages irrespective of their meaning. However, in general, whenever communication occurs to convey a meaning, what matters is the receiver's understanding of the transmitted message and not necessarily its correct reconstruction. Hence, semantic communications introduce a new paradigm: transmitting only relevant information sufficient for the receiver to capture the meaning intended can save significant communication bandwidth. Thus, this work explores the opportunity offered by semantic communications for beyond 5G networks. In particular, we focus on the benefit of semantic compression. We refer to semantic message as a sequence of well-formed symbols learned from the "meaning" underlying data, which have to be interpreted at the receiver. This requires a reasoning unit, here artificial, on a knowledge base: a symbolic knowledge representation of the specific application. Therefore, we present and detail a novel architecture that enables representation learning of semantic symbols for effective semantic communications. We first discuss theoretical aspects and successfully design objective functions, which help learn effective semantic encoders and decoders. Eventually, we show promising numerical results for the scenario of text transmission, especially when the sender and receiver speak different languages.

Citations (49)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.