Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Generating Natural Language Adversarial Examples through An Improved Beam Search Algorithm (2110.08036v1)

Published 15 Oct 2021 in cs.CL and cs.AI

Abstract: The research of adversarial attacks in the text domain attracts many interests in the last few years, and many methods with a high attack success rate have been proposed. However, these attack methods are inefficient as they require lots of queries for the victim model when crafting text adversarial examples. In this paper, a novel attack model is proposed, its attack success rate surpasses the benchmark attack methods, but more importantly, its attack efficiency is much higher than the benchmark attack methods. The novel method is empirically evaluated by attacking WordCNN, LSTM, BiLSTM, and BERT on four benchmark datasets. For instance, it achieves a 100\% attack success rate higher than the state-of-the-art method when attacking BERT and BiLSTM on IMDB, but the number of queries for the victim models only is 1/4 and 1/6.5 of the state-of-the-art method, respectively. Also, further experiments show the novel method has a good transferability on the generated adversarial examples.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.