Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Cascaded Fast and Slow Models for Efficient Semantic Code Search (2110.07811v1)

Published 15 Oct 2021 in cs.CL and cs.PL

Abstract: The goal of natural language semantic code search is to retrieve a semantically relevant code snippet from a fixed set of candidates using a natural language query. Existing approaches are neither effective nor efficient enough towards a practical semantic code search system. In this paper, we propose an efficient and accurate semantic code search framework with cascaded fast and slow models, in which a fast transformer encoder model is learned to optimize a scalable index for fast retrieval followed by learning a slow classification-based re-ranking model to improve the performance of the top K results from the fast retrieval. To further reduce the high memory cost of deploying two separate models in practice, we propose to jointly train the fast and slow model based on a single transformer encoder with shared parameters. The proposed cascaded approach is not only efficient and scalable, but also achieves state-of-the-art results with an average mean reciprocal ranking (MRR) score of 0.7795 (across 6 programming languages) as opposed to the previous state-of-the-art result of 0.713 MRR on the CodeSearchNet benchmark.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.