Papers
Topics
Authors
Recent
Search
2000 character limit reached

Toward Learning Context-Dependent Tasks from Demonstration for Tendon-Driven Surgical Robots

Published 15 Oct 2021 in cs.RO | (2110.07789v1)

Abstract: Tendon-driven robots, a type of continuum robot, have the potential to reduce the invasiveness of surgery by enabling access to difficult-to-reach anatomical targets. In the future, the automation of surgical tasks for these robots may help reduce surgeon strain in the face of a rapidly growing population. However, directly encoding surgical tasks and their associated context for these robots is infeasible. In this work we take steps toward a system that is able to learn to successfully perform context-dependent surgical tasks by learning directly from a set of expert demonstrations. We present three models trained on the demonstrations conditioned on a vector encoding the context of the demonstration. We then use these models to plan and execute motions for the tendon-driven robot similar to the demonstrations for novel context not seen in the training set. We demonstrate the efficacy of our method on three surgery-inspired tasks.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.