Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Application of Homomorphic Encryption in Medical Imaging (2110.07768v1)

Published 12 Oct 2021 in eess.IV, cs.CR, and cs.CV

Abstract: In this technical report, we explore the use of homomorphic encryption (HE) in the context of training and predicting with deep learning (DL) models to deliver strict \textit{Privacy by Design} services, and to enforce a zero-trust model of data governance. First, we show how HE can be used to make predictions over medical images while preventing unauthorized secondary use of data, and detail our results on a disease classification task with OCT images. Then, we demonstrate that HE can be used to secure the training of DL models through federated learning, and report some experiments using 3D chest CT-Scans for a nodule detection task.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.