Papers
Topics
Authors
Recent
2000 character limit reached

Attention-Free Keyword Spotting (2110.07749v3)

Published 14 Oct 2021 in cs.LG, cs.SD, and eess.AS

Abstract: Till now, attention-based models have been used with great success in the keyword spotting problem domain. However, in light of recent advances in deep learning, the question arises whether self-attention is truly irreplaceable for recognizing speech keywords. We thus explore the usage of gated MLPs --previously shown to be alternatives to transformers in vision tasks-- for the keyword spotting task. We provide a family of highly efficient MLP-based models for keyword spotting, with less than 0.5 million parameters. We show that our approach achieves competitive performance on Google Speech Commands V2-12 and V2-35 benchmarks with much fewer parameters than self-attention-based methods.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.