Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Meta-Reinforcement Learning Based Resource Allocation for Dynamic V2X Communications (2110.07734v1)

Published 14 Oct 2021 in cs.IT and math.IT

Abstract: This paper studies the allocation of shared resources between vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) links in vehicle-to-everything (V2X) communications. In existing algorithms, dynamic vehicular environments and quantization of continuous power become the bottlenecks for providing an effective and timely resource allocation policy. In this paper, we develop two algorithms to deal with these difficulties. First, we propose a deep reinforcement learning (DRL)-based resource allocation algorithm to improve the performance of both V2I and V2V links. Specifically, the algorithm uses deep Q-network (DQN) to solve the sub-band assignment and deep deterministic policy-gradient (DDPG) to solve the continuous power allocation problem. Second, we propose a meta-based DRL algorithm to enhance the fast adaptability of the resource allocation policy in the dynamic environment. Numerical results demonstrate that the proposed DRL-based algorithm can significantly improve the performance compared to the DQN-based algorithm that quantizes continuous power. In addition, the proposed meta-based DRL algorithm can achieve the required fast adaptation in the new environment with limited experiences.

Citations (76)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.