Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Decomposing Convolutional Neural Networks into Reusable and Replaceable Modules (2110.07720v2)

Published 11 Oct 2021 in cs.CV

Abstract: Training from scratch is the most common way to build a Convolutional Neural Network (CNN) based model. What if we can build new CNN models by reusing parts from previously build CNN models? What if we can improve a CNN model by replacing (possibly faulty) parts with other parts? In both cases, instead of training, can we identify the part responsible for each output class (module) in the model(s) and reuse or replace only the desired output classes to build a model? Prior work has proposed decomposing dense-based networks into modules (one for each output class) to enable reusability and replaceability in various scenarios. However, this work is limited to the dense layers and based on the one-to-one relationship between the nodes in consecutive layers. Due to the shared architecture in the CNN model, prior work cannot be adapted directly. In this paper, we propose to decompose a CNN model used for image classification problems into modules for each output class. These modules can further be reused or replaced to build a new model. We have evaluated our approach with CIFAR-10, CIFAR-100, and ImageNet tiny datasets with three variations of ResNet models and found that enabling decomposition comes with a small cost (1.77% and 0.85% for top-1 and top-5 accuracy, respectively). Also, building a model by reusing or replacing modules can be done with a 2.3% and 0.5% average loss of accuracy. Furthermore, reusing and replacing these modules reduces CO2e emission by ~37 times compared to training the model from scratch.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.