Papers
Topics
Authors
Recent
2000 character limit reached

Retrieval-guided Counterfactual Generation for QA (2110.07596v2)

Published 14 Oct 2021 in cs.CL and cs.AI

Abstract: Deep NLP models have been shown to learn spurious correlations, leaving them brittle to input perturbations. Recent work has shown that counterfactual or contrastive data -- i.e. minimally perturbed inputs -- can reveal these weaknesses, and that data augmentation using counterfactuals can help ameliorate them. Proposed techniques for generating counterfactuals rely on human annotations, perturbations based on simple heuristics, and meaning representation frameworks. We focus on the task of creating counterfactuals for question answering, which presents unique challenges related to world knowledge, semantic diversity, and answerability. To address these challenges, we develop a Retrieve-Generate-Filter(RGF) technique to create counterfactual evaluation and training data with minimal human supervision. Using an open-domain QA framework and question generation model trained on original task data, we create counterfactuals that are fluent, semantically diverse, and automatically labeled. Data augmentation with RGF counterfactuals improves performance on out-of-domain and challenging evaluation sets over and above existing methods, in both the reading comprehension and open-domain QA settings. Moreover, we find that RGF data leads to significant improvements in a model's robustness to local perturbations.

Citations (29)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.