Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

RGB-D Image Inpainting Using Generative Adversarial Network with a Late Fusion Approach (2110.07413v1)

Published 14 Oct 2021 in cs.CV

Abstract: Diminished reality is a technology that aims to remove objects from video images and fills in the missing region with plausible pixels. Most conventional methods utilize the different cameras that capture the same scene from different viewpoints to allow regions to be removed and restored. In this paper, we propose an RGB-D image inpainting method using generative adversarial network, which does not require multiple cameras. Recently, an RGB image inpainting method has achieved outstanding results by employing a generative adversarial network. However, RGB inpainting methods aim to restore only the texture of the missing region and, therefore, does not recover geometric information (i.e, 3D structure of the scene). We expand conventional image inpainting method to RGB-D image inpainting to jointly restore the texture and geometry of missing regions from a pair of RGB and depth images. Inspired by other tasks that use RGB and depth images (e.g., semantic segmentation and object detection), we propose late fusion approach that exploits the advantage of RGB and depth information each other. The experimental results verify the effectiveness of our proposed method.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.