Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Quantum Rényi divergences and the strong converse exponent of state discrimination in operator algebras (2110.07320v2)

Published 14 Oct 2021 in quant-ph, cs.IT, math-ph, math.IT, math.MP, and math.OA

Abstract: The sandwiched R\'enyi $\alpha$-divergences of two finite-dimensional quantum states play a distinguished role among the many quantum versions of R\'enyi divergences as the tight quantifiers of the trade-off between the two error probabilities in the strong converse domain of state discrimination. In this paper we show the same for the sandwiched R\'enyi divergences of two normal states on an injective von Neumann algebra, thereby establishing the operational significance of these quantities. Moreover, we show that in this setting, again similarly to the finite-dimensional case, the sandwiched R\'enyi divergences coincide with the regularized measured R\'enyi divergences, another distinctive feature of the former quantities. Our main tool is an approximation theorem (martingale convergence) for the sandwiched R\'enyi divergences, which may be used for the extension of various further results from the finite-dimensional to the von Neumann algebra setting. We also initiate the study of the sandwiched R\'enyi divergences of pairs of states on a $C*$-algebra, and show that the above operational interpretation, as well as the equality to the regularized measured R\'enyi divergence, holds more generally for pairs of states on a nuclear $C*$-algebra.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.