Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution (2110.07202v1)
Abstract: In this paper, we introduce a variational Bayesian algorithm (VBA) for image blind deconvolution. Our generic framework incorporates smoothness priors on the unknown blur/image and possible affine constraints (e.g., sum to one) on the blur kernel. One of our main contributions is the integration of VBA within a neural network paradigm, following an unrolling methodology. The proposed architecture is trained in a supervised fashion, which allows us to optimally set two key hyperparameters of the VBA model and lead to further improvements in terms of resulting visual quality. Various experiments involving grayscale/color images and diverse kernel shapes, are performed. The numerical examples illustrate the high performance of our approach when compared to state-of-the-art techniques based on optimization, Bayesian estimation, or deep learning.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.