Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Context-gloss Augmentation for Improving Word Sense Disambiguation (2110.07174v1)

Published 14 Oct 2021 in cs.CL and cs.LG

Abstract: The goal of Word Sense Disambiguation (WSD) is to identify the sense of a polysemous word in a specific context. Deep-learning techniques using BERT have achieved very promising results in the field and different methods have been proposed to integrate structured knowledge to enhance performance. At the same time, an increasing number of data augmentation techniques have been proven to be useful for NLP tasks. Building upon previous works leveraging BERT and WordNet knowledge, we explore different data augmentation techniques on context-gloss pairs to improve the performance of WSD. In our experiment, we show that both sentence-level and word-level augmentation methods are effective strategies for WSD. Also, we find out that performance can be improved by adding hypernyms' glosses obtained from a lexical knowledge base. We compare and analyze different context-gloss augmentation techniques, and the results show that applying back translation on gloss performs the best.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.