Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Offline Reinforcement Learning for Autonomous Driving with Safety and Exploration Enhancement (2110.07067v2)

Published 13 Oct 2021 in cs.RO, cs.SY, and eess.SY

Abstract: Reinforcement learning (RL) is a powerful data-driven control method that has been largely explored in autonomous driving tasks. However, conventional RL approaches learn control policies through trial-and-error interactions with the environment and therefore may cause disastrous consequences such as collisions when testing in real-world traffic. Offline RL has recently emerged as a promising framework to learn effective policies from previously-collected, static datasets without the requirement of active interactions, making it especially appealing for autonomous driving applications. Despite promising, existing offline RL algorithms such as Batch-Constrained deep Q-learning (BCQ) generally lead to rather conservative policies with limited exploration efficiency. To address such issues, this paper presents an enhanced BCQ algorithm by employing a learnable parameter noise scheme in the perturbation model to increase the diversity of observed actions. In addition, a Lyapunov-based safety enhancement strategy is incorporated to constrain the explorable state space within a safe region. Experimental results in highway and parking traffic scenarios show that our approach outperforms the conventional RL method, as well as state-of-the-art offline RL algorithms.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.