Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Study of positional encoding approaches for Audio Spectrogram Transformers (2110.06999v1)

Published 13 Oct 2021 in cs.SD, cs.LG, and eess.AS

Abstract: Transformers have revolutionized the world of deep learning, specially in the field of natural language processing. Recently, the Audio Spectrogram Transformer (AST) was proposed for audio classification, leading to state of the art results in several datasets. However, in order for ASTs to outperform CNNs, pretraining with ImageNet is needed. In this paper, we study one component of the AST, the positional encoding, and propose several variants to improve the performance of ASTs trained from scratch, without ImageNet pretraining. Our best model, which incorporates conditional positional encodings, significantly improves performance on Audioset and ESC-50 compared to the original AST.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.